Can I Buy Any Car Altenator and Generate Electric?

The key issue is what kind of motor will turn the alternator. Or do you plan to hand crank it? It has to turn to generate electricity. If you were to hand crank it, you would have to crank it completely around 20 times per second. Your arm would get sore, if you could move it that fast. If you plan to hook it up to a gasoline engine, which you plan to buy, it would be better to just buy a gasoline powered generator. Some have 12VDC outputs in addition to 117VAC. Keep in mind that a car alternator does not output exactly 12V. It varies with its speed. It has to be higher than 12V to charge a 12V battery.

1. Why do people refer to boat engines as motors?

Because we do not use precise language in everyday conversation, and that's ok, long as we all know what we are talkin bout. "Motor" implies "motion" as in "automotive" or "locomotive"; whereas in my vocabulary an "engine" is a device for converting potential energy into kenetic energy. An outboard motor has an engine contained within it. When you refer the motor in your I/O, I think of everything from air intake to propeller, but if you say "engine", I think we are just talkin bout the stuff inside the engine compartment. Apart from rail locomotives, you almost never hear of an "electric engine." A motorcycle has an engine, but you do not call it an enginecycle. Nobody refers to google as a "search motor," or an airport as an "economic motor."

2. Is there such a thing as a non-battery powered electric vehicle?

There was a thing called a Gyrobus in the 40's and 50's. It's a fascinating concept. I copied and pasted this next paragraph from Gyrobus - Wikipedia.The concept of a flywheel-powered bus was developed and brought to fruition during the 1940s by Oerlikon (of Switzerland), with the intention of creating an alternative to battery-electric buses for quieter, lower-frequency routes, where full overhead-wire electrification could not be justified. Rather than carrying an internal combustion engine or batteries, or connecting to overhead powerlines, a gyrobus carries a large flywheel that is spun at up to 3,000 RPM by a "squirrel cage" motor. To obtain tractive power, capacitors would excite the flywheel's charging motor so that it became a generator, in this way transforming the energy stored in the flywheel back into electricity. Vehicle braking was electric, and some of the energy was recycled back into the flywheel, thereby extending its range.Is there such a thing as a non-battery powered electric vehicle?

3. Determining motor speed and torque given a power and constant voltage

Looking at the datasheet, while it does not lie, it is definitely on the edge of misleading.Note that the "max power" stated occurs at almost exactly half the unloaded RPM and half the stall current. This is indeed the "max power" point for such a motor, but the datasheet fails to mention that it is also the nominal 50% efficiency point, thus dissipating 12V*68A-337W = 479W in that tiny motor - destroying it, probably in minutes. (Ideally, exactly half the power would be delivered, about 400W shaft and 400W heat, but the motor is not ideal).The motor is probably suitable for 100-150W continuous output and 200-250W short term.So practically you must operate the motor at the upper end of the speed range, and if the speed falls below (say) 70% of the unloaded speed (or the current rises to 30% of the stall current) then - unless this is strictly temporary, like starting a heavy load or hitting a chilled spot while machining a cast iron surface, you need to cut the current and protect the motor. Then the question of which side of the torque speed curve does not apply - unless the protection has tripped, you should be on the high speed side.You can get circuit breakers that will allow short-term overcurrent. These are "motor rated" or Class C breakers for the AC motors used in most machine tools. I do not know of anything suitable for 12V DC though. I would be looking for a 12V DC supply that can be set to trip if its output exceeds 40A for more than a couple of seconds. And as Olin says, if you want to monitor it yourself, measuring the current is definitely the way to go.

get in touch with us
Artikel yang disarankan
IGBT of Fuji Motor Electronic Equipment Technology
The IGBT technology of Fuji motor and electronic equipment technology has been commercialized since 1988 and has been supplied in the market so far. Figure 1-3 shows the development process and application technology of IGBT products from the first generation to the fifth generation. Epitaxial wafers are used in the first to third generation IGBT, and the characteristics are improved by optimizing life cycle control and refinement technology of IGBT. Then, the fourth and fifth generation products have achieved significant characteristic improvement through the transition from epitaxial wafer to FZ (floating zone) wafer. In this regard, the design policy of IGBT has changed greatly compared with the past.Firstly, the basic design idea of IGBT using epitaxial wafer (series products up to 600V of the third to fourth generation, called "breakdown type") is as follows. In order to realize the low-pass state voltage during IGBT conduction, a large number of carriers are injected from the collector side to fill the IGBT with high concentration carriers. In addition, the n-buffer layer specially set to maintain the high voltage forms a very thin n-layer, so as to realize the low-pass state voltage. In order to realize fast exchange, life cycle control technology aiming at the rapid disappearance of carriers filled in IGBT is also adopted (through these, low exchange loss (eoff) can also be realized). However, once the life cycle control technology is applied, even in the normal on state, due to the effect of this technology (the carrier transport efficiency decreases), there is a problem of increasing the on state voltage, which can be solved by further high carrier injection.In short, the basic design concept of IGBT using epitaxial wafer technology can be simply summarized as "high injection and low transmission efficiency". In contrast, IGBTs using FZ wafers (series after the fourth generation 1200V) adopt a reverse basic design to inhibit the injection of carriers from the collector side and improve the transmission efficiency by reducing the injection efficiency. In the above-mentioned design concept of IGBT using epitaxial wafer "high injection and low transmission efficiency", the carriers that are not easy to be injected are forcibly suppressed through the control of life cycle, which not only limits the improvement of characteristics, but also increases the standard deviation of on-state voltage characteristics through the control of life cycle, It is very disadvantageous to the large capacity required for parallel use with increasing requirements in recent years. The technology developed to overcome this problem is a new IGBT using FZ chip (NPT: non punch through (used from the fourth generation IGBT) / FS: field stop (used from the fifth generation IGBT) - IGBT). The IGBT does not adopt life cycle control. Its basic design idea is to control the impurity concentration of the collector (P layer), so as to inhibit the carrier injection efficiency. However, in order to realize the characteristics superior to the IGBT using epitaxial wafer, it is also required to realize more than one hundred for the 1200V high voltage resistant series IGBT μ M (the thickness of n-layer in NPT and fs-igbt using FZ wafer ≈ the thickness of chip (wafer). The thinner the thickness, the lower the on state voltage can be generated). In short, it is not too much to call the development of IGBT using FZ chip a challenge to chip thickness.Fuji electric and electronic equipment technology has solved these problems. Starting from the fourth generation 1200V series - IGBT, it has realized the commercialization of "s series" constructed by FZ chip NPT. In addition, 600V series technology with higher thickness requirements is further developed, and 600v-u2 series (fifth generation) is being commercialized. In addition, in 1200V series - the fifth generation "U Series", in order to improve the performance better than s series, NPT structure has been changed to FS structure.The so-called FS structure does not use the life cycle control technology. While following the basic design concept of "low injection and high transport efficiency" of carriers, an n buffer layer to maintain voltage is set on the FZ wafer, so as to realize the IGBT structure thinner than the NPT structure. Through this change, 1200v-u series realizes the low on state voltage characteristic better than s series, and completes its commercialization. In addition, this technology is also used in 1700V series high voltage withstand series, and is also starting to be commercialized.Figure 1-3 changes of Fuji motor electronic equipment IGBT application technologyIn addition, Fuji electric and electronic equipment technology is also refining the surface structure indispensable for the improvement of IGBT characteristics (IGBT is formed by multiple IGBT plates. Through refinement, the more plates, the more low on-state voltage can be realized). Up to the fourth generation products, the planar structure (the structure of planar IGBT) has been used to promote refinement, so as to improve the characteristics. However, starting from the fifth generation products - 1200 and 1700V series, the grooved IGBT technology slotted on the Si surface and constituting IGBT has broken the subtle technical barrier and achieved unprecedented characteristic improvement. Figure 1-4 shows the change of characteristic improvement of 1200V series.Figure 1-4 improvement of balance characteristics
How Is an Electric Motor Conversion Kit Patent Eligible?
A Powerful Pull/rotate Device That Provides a Certain (controllable) Force?
If You Had a Motorcycle Accident and Almost Died Would You....?
Motor Regenerative Braking of Electric Vehicles
How Long Do Honda Motorcycles Last?
How to Select Stepping Motor
How to Connect an AC Brushless Motor to a Transformer?
Shunt DC Motor Controller Improvement
Global Permanent Magnet Motor Market (2021 to 2026) - Adoption of Cost-Effective Ferrite Permanent M
related searches
How Can I Calculate DC Motor Continuous Current?
Frequency of Motor Vibration with Different Voltage
Refrigeration Compressor Circuit, Help Trying to Reverse Engineer It
Null
Is This Bad Starter Motor?
General Motors Gives the Iconic Chevy Blazer a Reboot with Help From This Young, Black Aerodynamics
Identifying American (Mercury) Mariner Outboard
Wiring a 3 Phase Motor?
Problems with Central Heat and Air.?

Copyright © 2020  Shandong Abusair Agricultural Machinery Co,. Ltd- |  Sitemap

Multifunctional farm Abusair machinery  |  Tea Professional Cultivator farm machinery